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A solution of the transient problem of the behaviour of a circular elastic plate floating on the free surface of a liquid under the 
action of an external load is constructed. It is assumed that the liquid is ideal and incompressible and that its depth is small 
compared with the radius of the plate. The compatible motion of the plate and the liquid is treated within the framework of 
linear theory. The flow of the liquid is assumed to be irrotational. The behaviour of the plate under different loads is investigated 
and it is shown that the bounded dimensions of the elastic plate have a substantial effect on its unsteady behaviour. 0 200.7 Elsevier 
Ltd. All rights reserved. 

The action of periodic surface pressures on a circular platform floating on the surface of a liquid of 
finite depth has been investigated earlier [ 11. In the planar case, girders of finite and semi-infinite length 
were considered and, in the spatial case, a circular plate. The oscillations of the liquid and the plate 
were assumed to be steady. This problem is a special case of the transient problem of the action of an 
external dynamic load on a floating elastic plate. The unsteady behaviour of an elastic plate which is 
unbounded in plan has been studied quite thoroughly (set [2-4], for example) as applied to the 
investigation of the effect of a moving external load on an ice sheet. Examples of calculations have been 
presented for a rectangular plate [5, 61. The planar problem of the unsteady behaviour of an elastic 
beam of finite length floating on shallow water has been investigated [7] in the case of different external 
loads, with an without allowing for the inertia of the load. 

1. FORMULATION OF THE PROBLEM 

Suppose a homogeneous circular elastic plate of radius r. floats in the surface layer of an ideal 
incompressible liquid of depth H. The surface of the liquid not covered by the plate is free. The liquid 
flow is assumed to be irrotational. We will denote the velocity potentials of the liquid in the domain 
under the plate and outside this domain by r$(r)(x, y, t) and +(2)(~, y, t) respectively, where x and y are 
the horizontal coordinates with the origin of coordinates at the centre of the plate. 

The normal deflection of an elastic plate w(x, y, t) is described by the equation (a time derivative is 
denoted by a dot) 

DA2w + p,h,ti + gpw + p+(1) = -P(x, y, t), r I i-0 

where 

A = i12/ax2 + a2/ay2, r = dm, D = Eh;l[ 12( 1 - v2)] 

E, pl, hi v are the modulus of normal elasticity, the density, the thickness and Poisson’s ratio of the 
plate, p is the density of water and g is the acceleration due to gravity. The function P&y, t) is specified 
and describes the external pressure acting on the plate. 

According to linear shallow-water theory, the following relation holds 

3 = -hA+“‘, rSro; h = H-d (1.4 

where d = plhllp is the setting of the plate. 
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In the clear water region, the velocity potential @(‘)(x, y, t) satisfies the equation 

i$(*) = gHA$‘2’ (r > r,,) (1.3) 

with the attenuation condition @) -+ 0 (r + -). 
The assumption that the liquid, when Y > ro, is weightless is used in collision theory when investigating 

short-term external action on a floating elastic plate [8] and then, instead of Eq. (1.3), we have 

c$2’(x, y, t) = 0, r> r-0 (1.4) 

When r = ro, the following conditions of continuity of the pressure and mass flow must be satisfied 

(1) 
$ b(2), = ap/ar = (Hlh)a$‘2’lar (1.5) 

The conditions of a free edge, that is, that the bending moment and the shearing force are zero, are 
imposed on the edges of the plate 

=o, r=ro 

where 
8 = arctg(ylx), vi = 1 -v 

We will assume that, at the initial instant of time, the liquid and the plate are at rest. Then, 

w=gJ=l$ (1) = p= p = 0, * = 0 (l-6) 

Next, we change to the dimensionless variables (denoted by primes) 

(X’, Y’, IT, h’) = (” ‘;DH, ‘), f’ = of, W’ = %, pi 2 = ~, p’ = ~ 
‘0 a gro 

where a is a factor having the dimension of length. The following dimensionless coefficients will be used 
below 

2. EXPANSION IN NATURAL OSCILLATIONS 

For simplicity, we will assume that the external pressure in Eq. (1.1) is an even function of y and, 
consequently, the deflections of the plate are symmetrical about thex axis. In the dimensionless variables 
(the primes are henceforth omitted), we shall seek the deflection of the plate in the form of an expansion 
in the natural oscillations of a circular plate with free edges in a vacuum 

w(r, 8, f) = C cosne c aj,(t)Wjn(r) (2.1) 
n=O j=O 

where Uj~(t) are unknown functions of time, to be determined, and l$(r) is the solution of the eigenvalue 
problem 

Lrl wjn 
W,Im+vWjn-n2vWj, = (LnWjn)l+n2v1(Wjn-WjJ = 0, r = 1 
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where a prime denotes differentiation with respect to r. This eigenvalue problem has been studied in 
detail in [9, lo]. All the eigenfunctions, apart from W’, = & and W”r = 2r. which are modes of motion 
of a rigid body and correspond to the characteristic numbers 3yj0 = k,, = 0, have the form 

Wjn = Aj,[J,(hj”r) + Cj,l,(aj,r)l 

where 

c, = ':nJn(hjn) + ‘1 [hj,Ji(aj,) - n2J,(5,“)1 
In 

h%rn(hj,) - vl[hjnzi(ajn) -n2z~(aj”)l = 

= h;PIJt@I(hj,) + n2V1 Ihj,Ji(aj”) - J”(hj”)l 

‘:nzithj,) -n2v3 Iaj,zi(hj”) - z,(aj,>l 

A;; = ; J;(hj,) +J;(hj,) + 2 
Jo 

[zI(hjO)JO(hj~) + z~(hj~)J~(hj())l + 

+ c~OIYz~(hjO) -zf(hjO)l 
i 

3 j 2 l 

ATi = i 
i 

2c. 
‘~(aj,)-J,-I(lij,)/,+,(h,,)+--II hjn “n+ l(hjn)Jn(hjn) + ‘,Chj,)J,+ l(hj,)] + 

+ cffz[r~(Aj,) - I,- ,(hj”)z,**(hj”)l 7 j9 n > l 

1, and Z,, are normal and modified Bessel functions of the first kind. The characteristic numbers 
hjn (hi, > hi+rn) are determined from the dispersion relation, which follows form (2.2). The set of 
functrons W,,, forms a complete orthogonal system with the normalization condition 

I rWj,(r) W,,(r)dr = ajk 
0 

where 6, is the Kronecker delta. Numerical values of hi,, C,t? and Aj, are given in [IO) for the first 701 
modes when v = 0.33. 

Using the condition of symmetry with respect to the angular coordinate 8, we represent the potentials 
4”’ ‘)(r 0 t) in the form > 3 

$(‘*2)(r, 0, t) = x a:’ 2’( r, t)cosnO (2.3) 
n=O 

Using expansions (2.1) and (2.3), we seek a solution for @A” (r, t), which satisfies Eq. (1.2) in the form 

E cij,(t)[Yj,(r) - rnYjn( l)] + r”q,(t) (2.4) 
j=o 

The functions ‘Pin(r) are determined from the equation 

&Yj,(r) = Wj,(r) 

For the rigid-body modes 

Y&r) = 2 
2JT 

Yol(r) = i 
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and for the remaining modes 

Yjn = 
Ajn 
z[C,nr,tkjttr) - J,(~j,r>l 

J” 

The functions qn(t) and expression (2.4) are unknown. Assuming the liquid to be weightless when 
r > 1, according to Eq. (1.4) we have q,, = 0 and, in the case of a ponderable liquid, these functions are 
determined from the matching conditions for the potentials @A’) (r, t), @i2) (r, t) along the perimeter of 
the plate and their derivatives with respect to r 

(p(1) 
n = QL2’, &~“/lh- = j3iMf’lar, r= I 

which follow from relations (1.5). 
According to Eq. (1.3), the equation for Q2)(r, t) has the form 

The properties of the solutions of this equation were described in detail in [ll] when investigating the 
problem of the diffraction ofacoustic waves by a rigid circular cylinder. 

We introduce the notation 

Applying a Laplace integral transformation, we obtain the following relations which connect these 
functions. 

where the so-called transition function has the form 

G,(5) = & ‘+‘- K (s) j iexp(sQds 
a-i- s&,(s) 

(2.6) 

Here, K,, are modified Bessel functions of the second kind and the quantity o is chosen such that the 
path of integration on the right-hand side of equality (2.6) lies to the right of all the singular points of 
the integrand. The transition functions G,(t) have been tabulated in [12] for up to n = 10, simple 
approximations of them have been proposed in [13] and a graphical comparison of the exact and 
approximate solution has also been given in [13]. 

We now substitute expansions (2.1), (2.3) and (2.4) into the dimensionless analogue of Eq. (1.1) and 
the initial conditions (1.6), multiply the resulting relations by rcos(nO)W~n(r) and integrate them with 
respect to r within the limits from 0 to 1 and with respect to 8 within the limits from 0 to 27r. Using the 
properties of the functions Wh(r), we obtain the following system of ordinary differential equations 
(ODE) 

m 

c..[ dJn Y6, - t De’] + ( 1 + GhC)a,, - ~S,,q, = -P,, ’ (k = 0, 1,2...) 
j=O 

(a dot now denotes a total derivative with respect to time) with the boundary conditions 

ak,(0) = &to) = q”(0) = 0 

Here, 

D'? = 

kl 
rwk,,(r)[yj,,(r) - r”\Yjn( l)]dr, Dg’ = D$’ 

0 

(2.7) 

(2.8) 
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1 

Sk, = I r ‘+‘W,,(r)dr (2.9) 
0 

II 1 

Pk”(Q = : Icos(ne)delrP(r,e,f)W~,(r)dr, E. = 1, E, = 2 (n? 1) (2.10) 
0 0 

The integrodifferential equation, which is a consequence of relation (2.5). 

where 

(z)bj, + nq,(‘t) G,( fi(r - f))dz 
1 

bjn = tlYjJdrI,=, -?lYj,(l) 

(2.11) 

closes this system of ordinary differential equations. 
It can be shown that S, = 

simplified with it = 
bb. The system of integrodifferential equations (2.7), (2.11) is somewhat 

0, 1 when all of the values of &,, are equal to zero apart from So0 = l/4 and 
so, = 112. 

3. METHOD OF NUMERICAL SOLUTION 
Using the reduction method, the infinite series in relations (2.1), (2.3) and (2.4) are replaced by finite 
sums with a number of terms N in the expansion in angular harmonics and taking account of the first 
M eigenfunctions. The integration in (2.8) and (2.9) is carried out analytically while, in (2.1) in the case 
of an arbitrary distribution of the external pressure P(r, 8, t), the doubIe integral is evahrated numerically. 

The equations (2.7) and (2.11) are solved by the method of finite differences with a constant time 
step. The method described earlier in [6] is used to calculate the convolution-type integral in (2.11). 

We will now briefly describe it by taking the evaluation of the integral 
t 

F(t) = jV(r)z(t - r)dr (3.1) 
0 

as the example. 
For an instant of time t = Kc, where c is the time step, integral (3.1) can be written in the form 

F(KI;) = c 1 V(r)Z(t-r)dr. fk = kc (3.2) 
fl=O tk 

2 
We denote the values of the functions V(t) and Z(t) at the instants of time tk by I’, and zk(k = 0, 1, 

9 *** , K) respectively. It is assumed that, when k c: K, these values are known. When tk d z S tk + ,, 
the linear approximation 

V(r) = v,+ V k+’ - ‘k 

c 
(T-Q 

Z(r-‘5) = z,-,+ 
Z 

K-(k+l) -zK-k 

4 
(r-td 

is used. 
Substituting expression (3.3) into equality (3.2) and integrating with respect to z, we obtain 

(3.3) 

K-l 
WQ = 4 #I=0 

~~~~~,_,~+,~+~,,,~,-&l+~~~,,,-~,~~~,-~,+,,-~,_,l 
I 
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Using this representation, relations connecting the unknown quantities &#X,) and tij,,(K<) can be 
obtained from Eq. (2.11), having differentiated it beforehand with respect tot. Substituting these relations 
into (2.7) we finally obtain a system of ordinary differential equations which can be written in the matrix 
form 

BS”‘;i n + B’“‘A = C 2n ” 

where the vector A,, = {a&Kc), ai,(KQ, . . . , u,,,&VJ>r, BT) and BP) are square matrices, of which 
BF) is a completely filled matrix and @) is a diagonal matrix, and the superscript T denotes transposition. 
Terms, which take account of the values of in and ~j~ in the preceding steps, occur in the vector C,, 
besides the right-hand side of Eq. (2.7). 

4. NUMERICAL RESULTS 

The results of the solution of the problem of the action of a periodic surface pressure on a circular 
plate floating in shallow water [l] were used to test the computational algorithm. The external pressure 
distribution was specified in the form (we return to dimensional variables here) 

where 

w, y, t) = apgf(R)sinot 

f(R) = 1-(R’1)29 R<! R = dm, l+~<~ 
0, R>l 

0 

Calculations, carried out for L = 0, rd2, show that, after about 2-3 periods of 27&r, the oscillations 
of the plate reach a periodic steady state. The amplitudes of the deflections of the plate under steady 
conditions were identical to the results obtained previously in [ 11. 

An external load of the form 
P(x, Y, 0 = apg.fWT(t) (4.2) 

was chosen in order to investigate pulsed action on the plate. 
The function f(R) was given by expression (4.1) and the time dependence has the form 

tlb, t 5 b 
T(t) = 2-t/b, bItI2b 

0, t>2b 

Calculations were carried out for the following values of the initial parameters 

D=4.476x 10”kgm2/s2, H=20m, p= 103kgm3, d= lm, 

ro=200m, 1=40m,v=0.3 

For these values of the parameters, we have y = 5 x lo”, 6 = 2.852 x 10”. 
Calculations for a circular plate are compared with the known solution for an infinite plate (see 

[2,3], for example). In the case of a load in the form of (4.2), this solution has the form 

w(R, t) = ‘$j -‘(k t)~W’oWdk 
0 Dk4 + pg 

where 
R-’ sinRt - t, 0 I t 5 b 

Y(k, t) = Q-‘[2sinQ(b-t)+sinQt]-2b+t, bltl2b 

f2-‘[2sinQ(b- t) - sin&2(2b- t) + sin!&], t > 26 



Action of an unsteady external load on a circular elastic plate floating on shallow water 413 

(y(k) = hk2W4+ P&f) f(k) = 
47cJ,(kl) 

p + pJz,hk’ ’ k2 

(&) is the Fourier transform of the functionf(R) (4.41)). It was assumed that b = 0.5 s in the calculations 
presented below. 

When the pressure spot is located at the centre of the plate (L = 0), the problem under consideration 
becomes axially symmetric and only the coefficients for 1~ = 0 and non-zero. The transition function 
G,(c) (2.6) has the form [ll] 

G,,(5) = -, 
exp(-@)d2 

,T2[z&T) + n2z:(2)] 
(4.3) 

and the approximate expression for it [13] is 

G&5) = -[0.6exp(-0.755) + CMexp(--0.132@] (4.4) 

The time dependence of the normal deflections of the plate w/a when r = 0 and r = r. are shown in 
Fig. 1 (the solid curves in Fig. la and b, respectively). The time scale is given in dimensional form (the 
dimensionless time is obtained by normalization on the quantity gg = 4.52 s). For comparison, the 
corresponding solutions for a weightless liquid are shown in Fig. l(a) and (b) (the dotted and dashed 
curves). The normal deflection of an infinite plate at the centre of application of the pressure is shown 
in Fig. l(a) by dashed curve. The calculations were carried out for M = 10 using expression (4.3). The 
results for the approximation (4.4) are shown by the small open circles. 

It is interesting to note that, at the centre of pressure in a time interval corresponding to the action 
of the pressure (t s 2b = 1 s), all the solutions are identical but, after the cessation of the external 
action, the deflections of the various plates are very different. In the case of an infinite plate, a monotonic 
restoration of the initial zeroth state is observed. In the case of a circular plate in a ponderable liquid, 
the initial state is also re-established with time but not in a monotonic manner. The maximum deflection 
of the edge of the plate is approximately equal to the maximum deflection at the centre of pressure 
and is attained when 1 = 4.2 s. Solutions with the exact transition function (4.3) and approximate function 

0 5 10 t, s 
Fig. 1 
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Fig. 2 

Fig. 3 

transition (4.4) are practically identical and the calculations which are subsequently presented later were 
carried out using the approximate dependences [13] for the transition functions G,&)- In the case of 
a plate in a weightless liquid, no decrease in the deflections with time is observed either at the centre 
of pressure or at the edges since, in this case, there is no generation of surface waves or scattering of 
energy. This simpler solution can be used to obtain an upper estimate of the maximum deflections of 
a plate under different external actions. 

The case of the asymmetric application of pressure (L = rd2) is shown in Fig. 2. The normal deflections 
at the centre of pressure (x = L, y = 0) are shown in Fig. 2(a) as a function of time for a circular plate 
(the solid curve) and an infinite plate (the dashed curve). As in Fig. l(a) these solutions are identical 
at instants of time corresponding to the action of the pressure (t s 1 s) and then subsequently gradually 
tend to zero. The oscillations of the edges of the plate when Y = r. are shown, for 8 = 0, by the solid 
curve in Fig. 2(b) and, when 8 = x, by the dot-dash curve in the case when N = M = 10. A comparison 
with the results of calculations when N = M = 7 is shown by the small open circles in Fig. 2(a) for the 
normal deflection at the centre of pressure and, in Fig. 2(b), for the oscillation of the edge of the plate 
when 0 = 0 and, also, by the solid points in Fig. 2(b) for the oscillation of the edge of the plate when 
0 = R. It is clear that, within the above-mentioned limits, a change in the number of wave harmonics 
N and eigenfunctions M which are taken into account has practically no effect on the results. 

The maximum values of the deflections at the left-hand and right-hand ends of a diameter passing 
through the centre of pressure are approximately equal and close to the values in the symmetric case 
(compare Fig. lb and Fig. 2b). However, the time of the appearance of the maximum deflections is 
different. The fastest (at t = 1.2 s) maximum deflection of all is attained on the right-hand edge closest 
to the pressure domain and then at t = 3.9 s at the opposite end. 

The results which have been presented confirm the conclusions [l, 71 that, in certain cases, the normal 
deflections of a plate on its edge exceed the corresponding values in the interior part. In this connection, 
it is interesting to study the behaviour of the edge of the plate in greater detail. The dependences 
w(ro 6, t) on the angular coordinate 8 at different instants of time t are shown in Fig. 3. It can be seen 
that, initially, the maximum deflection is attained at a point closest to the centre of pressure and the 
oscillations then propagate along the perimeter of the plate and are subsequently damped. A comparison 
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w/a 
0 

wla 

-0.06 
0 0.5 1.0 t/t, 

Fig. 4 

of the maximum deflections on the edge and at the point x = L, y = 0 at the instants of time indicated 
(see Fig. 2a) shows that the deflections of the edge are more significant. 

The effect of a moving load is demonstrated by considering an example which simulates the landing 
of an aircraft. It is assumed that, at the initial instant of time, the load has a speed v and smoothly touches 
the plate at the point x = x0, y = 0 and then moves to the left in a straight line and in a uniformly 
decelerating manner along a diameter until it comes to a complete stop at the point x= xl, y = 0 at the 
instant of time t = tl = 2(x0 -x1)/u. The function on the right-hand side of Eq. (1 .l) is given in the form 

P(x9 y, r) = upgil - exp(-Wlf(x, Y, f) 

where the functionfis defined by expression (4.1) taking into account the following time-dependence 
of motion of the centre of pressure 

1 22 

L(t) = 
xo-ur+4(x~fX,). OIt5:t, 

XI’ t>t, 

The previous initial parameters were used, however now 1 = O.lro, x0 = 0.7ro, xl = -0.7ro, b = 20/t,. 
The normal deflection of the plate on the axisy = 0 at the pointsx = 0 (a) andx = -r. (b) are shown 

in Fig. 4 as a function of time for different initial speeds of motion of the load u’ = u/Gt,. At the point 
x = ro, y = 0, the maximum value of 1 w/u ( does not exceed 0.007. Note that, for the specified depth of 
the liquid, the dimensionless critical velocity of propagation of gravitational waves is equal to x%& = 
0.33. The instant the crest of the load intersects the origin of coordinates is shown by the vertical segment 
in Fig. 4(a). It can be seen that it is only in the case of relatively slow motion that the maximum deflection 
of the plate is attained at the instant of passage of the centre of the load. As u’ increases, the time the 
maximum deflection appears at the origin of coordinates is observed after the load has passed through 
this point. When t > tt, the oscillations of the plate decay and gradually take values corresponding to 
a distributed static load centred at the point x = x1, y = 0. The solution of this steady problem is easily 
constructed using the method described above, where the system of ordinary differential equations (2.7) 
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reduces to a simple system of linear algebraic equations. The dimensionless values of the static deflection 
on the axisy = 0 whenx = 0 andx = -r. are equal to -0.002 and -0.041 respectively. The results shown 
in Fig. 4 were obtained for N = M = 7. 

Note that the method proposed can be extended to investigating the transient hydroelastic behaviour 
of a circular plate floating on the surface of a liquid of finite and infinite depth. 
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